Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Substantial (∼2°C) basin averaged sea surface temperature (SST) cooling in the Banda Sea occurred in less than a 14‐day period during the 2015 boreal winter Madden‐Julian Oscillation (MJO). Such rapid and large cooling associated with the MJO has not been reported at least in the last two decades. Processes that control the substantial cooling during the 2015 MJO event are examined using high‐resolution ocean reanalysis and one‐dimensional (1‐D) ocean model simulations. Previous studies suggest that MJO‐induced SST variability in the Banda Sea is primarily controlled by surface heat flux. However, heat budget analysis of the model indicates that entrainment cooling produced by vertical mixing contributes more than surface heat flux for driving the basin‐wide SST cooling during the 2015 event. Analysis of the ocean reanalysis further demonstrates that the prominent coastal upwelling around islands in the southern basin occurs near the end of the cooling period. The upwelled cold waters are advected by MJO‐induced surface currents to a large area within the Banda Sea, which further maintains the basin‐wide cold SST. These results are compared with another MJO‐driven substantial cooling event during the boreal winter of 2007 in which the cooling is mostly driven by surface heat flux. Sensitivity experiments, in which initial temperature conditions for the two events are replaced by each other, demonstrate that the elevated thermocline associated with the 2015 strong El Niño is largely responsible for the intensified cooling generated by the vertical mixing with colder subsurface waters.more » « less
-
The Role of Nearshore Air‐Sea Interactions for Landfalling Atmospheric Rivers on the U.S. West CoastAbstract Research on Atmospheric Rivers (ARs) has focused primarily on AR (thermo)dynamics and hydrological impacts over land. However, the evolution and potential role of nearshore air‐sea fluxes during landfalling ARs are not well documented. Here, we examine synoptic evolutions of nearshore latent heat flux (LHF) during strong late‐winter landfalling ARs (1979–2017) using 138 overshelf buoys along the U. S. west coast. Composite evolutions show that ARs typically receive upward (absolute) LHF from the coastal ocean. LHF is small during landfall due to weak air‐sea humidity gradients but is strongest (30–50 W/m2along the coast) 1–3 days before/after landfall. During El Niño winters, southern‐coastal LHF strengthens, coincident with stronger ARs. A decomposition of LHF reveals that sea surface temperature (SST) anomalies modulated by the El Niño Southern Oscillation dominate interannual LHF variations under ARs, suggesting a potential role for nearshore SST and LHF influencing the intensity of landfalling ARs.more » « less
An official website of the United States government
